New Articles
  January 13th, 2021 | Written by

Four Ways Carbon Capture Will Be A Game-Changer for Climate Change

[shareaholic app="share_buttons" id="13106399"]


  • The use of technology such as carbon capture could be part of a global solution to the world's carbon emission problem.
  • While carbon capture is incredibly promising, it does come with its own challenges.

Climate change is real, and carbon plays a significant role. According to the EPA, about 65 percent of global greenhouse gas emissions are carbon dioxide from fossil fuels and other industrial processes. This doesn’t even include other sources of carbon dioxide or other greenhouse gas emissions such as methane and nitrous oxide.

Carbon and other greenhouse gasses retain radiant heat from the sun, which causes an insulating effect that raises the atmospheric temperature. This overall temperature increase, also referred to as global warming, has been shown to be a direct cause of numerous negative climate events including the melting of polar ice caps, rising ocean levels, devastating and in some cases irreparable damage to ocean coral reefs, as well as unstable and harsh weather and storm patterns that cause catastrophic damage and loss of life. The use of technology such as carbon capture could be part of a global solution to the world’s carbon emission problem.

What is carbon capture?

Simply put, carbon capture is a means of collecting carbon from exhaust flues when it is produced as a biproduct of fossil fuel combustion (primarily CO and CO2). This carbon is released into the air from sources such as powerplants, manufacturing plants, or various modes of transportation that use carbon-based fuels including coal, natural gas, biomass, oil, and other fuel sources. The idea is to collect the carbon before it is released into the environment, thereby reducing its environmental impact.

Four ways in which carbon capture will be a game-changer

By reducing carbon emissions released into the atmosphere from industrial sources, we can make a significant impact on climate change. Carbon capture has encouraging potential and could radically alter the energy landscape because:

1. It allows the continued use of highly energy-dense and efficient carbon-based fuels (coal, natural gas and oil) without contributing additional carbon gasses to the atmosphere.

2. When applied to biomass-fueled combustion power plants, carbon capture has the potential to result in negative carbon emissions. Since the biomass sources—in the form of forest and agricultural waste—absorb and store carbon dioxide as part of natural lifecycles, capturing and sequestering the carbon dioxide after it is released effectively removes carbon dioxide from the atmosphere.

3. It sustains healthy global economic growth through abundant and affordable energy.

4. It retains billions of dollars in sunk costs in existing carbon-based generation infrastructure by sequestering carbon emissions.

What are the challenges of implementing carbon capture technology?

While carbon capture is incredibly promising, it does come with its own challenges. To date, the technologies that have shown potential have not been demonstrated at scale. By and large, they have only been verified in test environments. More tests in real-life carbon capture situations need to take place to prove that it is truly a viable option. Additionally, the economic tipping point has not been reached to allow carbon capture to compete with traditional thermal, nuclear, or renewable generation due to the intensive capital cost of installation.

Additional innovation and investment would need to take place to develop more cost-effective options, thereby reducing the cost and incentivizing manufacturing and transportation providers to install carbon capture systems. Finally, there exists a reputational barrier as carbon-based fuel combustion has become a target of environmental activists, who may not be receptive to the idea of “clean carbon” or “carbon neutral” initiatives. If we can both scale carbon capture and make it affordable, we can then show positive results that prove the system works. This scientific data is needed to help change the minds of environmental activists and politicians who are making environmental protection laws, to help them see substantial evidence that this type of technology will reduce carbon in the atmosphere.

The future of carbon capture

As carbon capture technology matures and closes scalability and commercial hurdles, it could result in a significant resurgence in carbon-based power generation. This will require time and money to navigate any barriers to entry both technically and politically. The bottom line is that carbon capture is incredibly promising, and as innovators in this area can show that it is good for the environment as well as for industry, it will be more likely to be adopted and supported.

As the goal of carbon reduction remains at the forefront of global concerns, IHI Power Services Corp is deeply interested in the potential advantages of carbon capture. Environmental stewardship and support services are part of its values and it is looking to new and innovative ways to protect the environment while supporting the power industry.


Dan Consie has 30 years of experience in the power generation industry with skills in business and contract management, engineering, operation and maintenance, and rotating equipment vibration diagnostics and balancing. Consie has held plant engineer, plant manager and asset manager positions and is currently serving as vice president of strategic initiatives at IHI Power Services Corp. (IPSC).